Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental & Molecular Medicine ; : e95-2014.
Article in English | WPRIM | ID: wpr-163228

ABSTRACT

Cysteine and aspartic proteases possess high elastolytic activity and might contribute to the degradation of the abdominal aortic aneurysm (AAA) wall. The aim of this study was to analyze, in detail, the proteases (cathepsins B, D, K, L and S, and inhibitor cystatin C) found in human AAA and healthy aortic tissue samples. The vessel walls from AAA patients (n=36) and nonaneurysmal aortae (n=10) were retrieved using conventional surgical repair and autopsy methods. Serum samples from the same AAA patients and 10 healthy volunteers were also collected. Quantitative expression analyses were performed at the mRNA level using real-time reverse transcriptase-PCR (RT-PCR). Furthermore, analyses at the protein level included western blot and immunoprecipitation analyses. Cellular sources of cysteine/aspartic proteases and cystatin C were identified by immunohistochemistry (IHC). All cysteine/aspartic proteases and cystatin C were detected in the AAA and control samples. Using quantitative RT-PCR, a significant increase in expression was observed for cathepsins B (P=0.021) and L (P=0.018), compared with the controls. Cathepsin B and cystatin C were also detected in the serum of AAA patients. Using IHC, smooth muscle cells (SMCs) and macrophages were positive for all of the tested cathepsins, as well as cystatin C; in addition, the lymphocytes were mainly positive for cathepsin B, followed by cathepsins D and S. All cysteine/aspartic proteases analyzed in our study were detected in the AAA and healthy aorta. The highest expression was found in macrophages and SMCs. Consequently, cysteine/aspartic proteases might play a substantial role in AAA.


Subject(s)
Aged , Humans , Middle Aged , Aorta/enzymology , Aortic Aneurysm, Abdominal/enzymology , Aspartic Acid Proteases/genetics , Case-Control Studies , Cathepsins/genetics , Cysteine Proteases/genetics , Lymphocytes/enzymology , Macrophages/enzymology , Myocytes, Smooth Muscle/enzymology , RNA, Messenger/genetics
2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 269-73, 2005.
Article in English | WPRIM | ID: wpr-634267

ABSTRACT

To investigate the effect of cigarette smoke extract (CSE) on the role of protein kinase C (PKC) in the proliferation of passively sensitized human airway smooth muscle cells (HASMCs). After synchronization of cultured HASMCs, they were divided into a group A and Group B. The group A was treated with normal human serum and served as controls and the group B was treated with the serum of asthma patients. The group A was further divided into group of A1, A2 and A3 and the group B was sub-divided into the group of B1, B2, B3, B4 and B5. No other agents were added to the group A1 and B1. The cells of group A2 and B2 were stimulated with 5% CSE for 24 h. HASMCs from group A3 and B3 were treated with PKC agonist PMA (10 nmol/L) and CSE (5%) for 24 h. PKC inhibitor Ro-31-8220 (5 micromol/L) was added to the HASMCs of group B4 for 24 h. The cells from group B5 were stimulated with Ro-31-8220 (5 micromol/L) and CSE (5 %) for 24 h. The proliferation of HASMCs isolated from group A and B was examined by cell cycle analysis, MTT colorimetric assay and 3H-TdR incorporation test. The expression of PKC-a in each group was observed by Western blotting and RT-PCR, respectively. The results showed that the percentage of S phase, absorbance (A) value, the rate of 3H-TdR incorporation, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B1, B2 and B3 were significantly increased compared to those of group A1, A2 and A3 correspondingly and respectively (P< 0.01). The proliferation of HASMCs of group A2 and B2 stimulated with CSE and group A3 and B3 stimulated with CSE and PMA were also significantly enhanced when group A1, A2 and A3 and group B1, B2 and B3 compared to each other (P<0.05, P<0.01, respectively). The percentage of S phase, absorbency (A) value, 3H-TdR incorporation rate, the ratios of A value of PKC-alpha mRNA and the A value of PKC-alpha protein in HASMCs from group B4 treated with Ro-31-8220 and group B5 treated with CSE and Ro-31-8220 were significantly decreased as compared to those of group B1 and B2 correspondingly and respectively (P<0.05, P<0.01). It was concluded that CSE can enhance the passively sensitized HASMC proliferation and the expression of PKC alpha. PKC and its alpha subtype may contribute to this process. Our results suggest cigarette may play an important role in ASMCs proliferation of asthma through PKC signal pathway.


Subject(s)
Asthma/blood , Bronchi/cytology , Bronchi/metabolism , Cell Cycle/drug effects , Cell Proliferation , Cells, Cultured , Culture Media , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/enzymology , Protein Kinase C/biosynthesis , Protein Kinase C/physiology , Serum , Signal Transduction , Nicotiana/adverse effects , Tobacco Smoke Pollution/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL